Data Warehouse and OLAP Technology

Data Warehouse:

"A data warehouse is a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of managements decision making process"

Data Warehouse and OLAP Technology

Differences between Operational Database Systems and Data Warehouses:

- 1. Processing -
- **OLTP** (on-line transaction processing) Vs **OLAP** (on-line analytical processing)
- 2. Users and System Oriented: customer oriented Vs marketoriented
- 3. Data content- current data Vs historical huge data
- 4. Data base design- ER Vs (Star schema, snowflake schema, and Fact constellation schema)
- 5. Access patterns- access short and atomic transactions Vs readonly operations

Feature	OLTP	OLAP					
Characteristic	operational processing	informational processing					
Orientation	transaction	analysis					
User	clerk, DBA, database professional	knowledge worker (e.g., manager, executive, analyst)					
Function day-to-day operations		long-term informational requirements, decision support					
DB design	ER based, application-oriented	star/snowflake, subject-oriented					
Data current; guaranteed up-to-date		historical; accuracy maintained over time					
Summarization	primitive, highly detailed	summarized, consolidated					
View	detailed, flat relational	summarized, multidimensional					
Unit of work	short, simple transaction	complex query					
Access	read/write	mostly read					
Focus	data in	information out					
Operations	index/hash on primary key	lots of scans					
Number of records accessed	tens	millions					
Number of users	thousands	hundreds					
DB size	100 MB to GB	100 GB to TB					
Priority	high performance, high availability	high flexibility, end-user autonomy					
Metric	transaction throughput	query throughput, response time					

1. From Tables and Spreadsheets to Data Cubes

"A data cube allows data to be modeled and viewed in multiple dimensions"

It is defined by dimensions and facts

A 2-D view of sales data for *AllElectronics* according to the dimensions *time* and *item*, where the sales are from branches located in the city of Vancouver. The measure displayed is *dollars_sold* (in thousands).

	location = "Vancouver"											
time (quarter)	item (type)											
	home entertainment	computer	phone	security								
Q1	605	825	14	400								
Q2	680	952	31	512								
Q3	812	1023	30	501								
Q4	927	1038	38	580								

Table 3.3 A 3-D view of sales data for *AllElectronics*, according to the dimensions *time*, *item*, and *location*. The measure displayed is *dollars_sold* (in thousands).

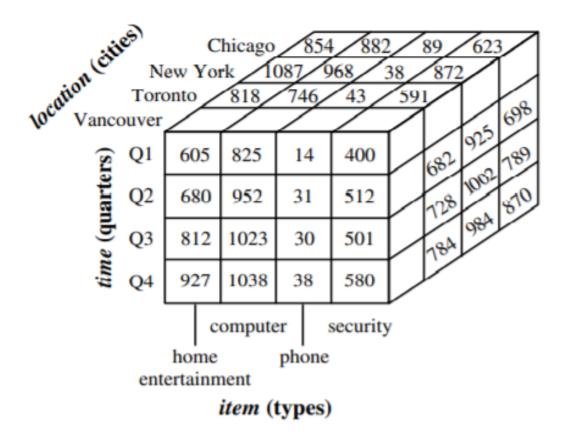
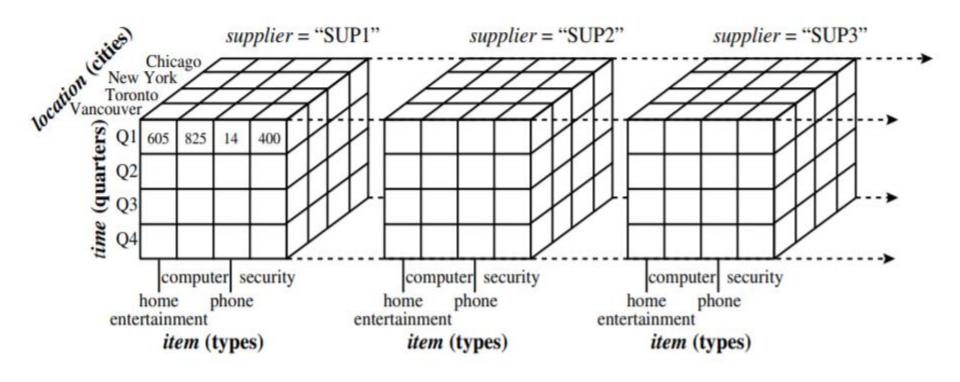

	location = "Chicago"				location = "New York"			loca	location = "Toronto"				location = "Vancouver"			
	item				item					i	tem		item			
time	home ent.	comp.	phone	sec.	home ent.		phone	sec.	home ent.		phone	sec.	home ent.		phone	sec.
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501
Q4	1129	992	63	870	1142	1091	54	984	978	864	59	784	927	1038	38	580

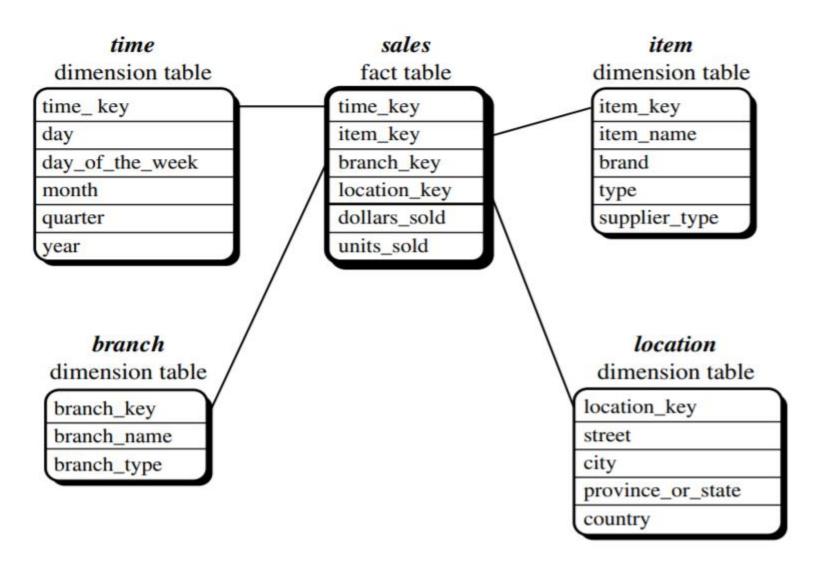
Table 3.3 A 3-D view of sales data for *AllElectronics*, according to the dimensions *time*, *item*, and *location*. The measure displayed is *dollars_sold* (in thousands).


	location = "Chicago"				location = "New York"			loca	location = "Toronto"				location = "Vancouver"			
	item				item					i	tem		item			
time	home ent.	comp.	phone	sec.	home ent.		phone	sec.	home ent.		phone	sec.	home ent.		phone	sec.
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501
Q4	1129	992	63	870	1142	1091	54	984	978	864	59	784	927	1038	38	580

A 3-D data cube representation of the data in Table 3.3, according to the dimensions time, item, and location. The measure displayed is dollars_sold (in thousands).

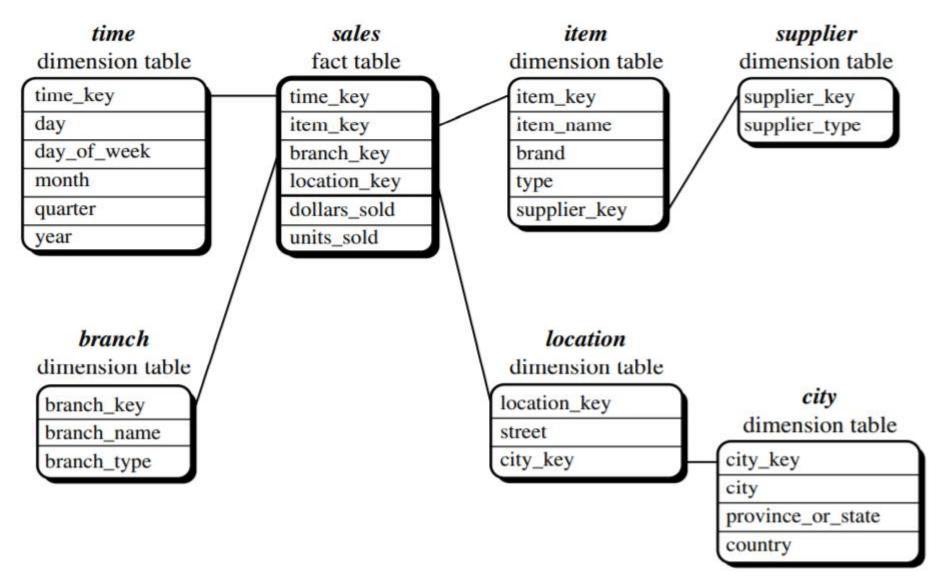
A 4-D data cube representation of sales data, according to the dimensions *time*, *item*, *location*, and *supplier*. The measure displayed is *dollars_sold* (in thousands). For improved readability, only some of the cube values are shown.

Star, Snowflake and Fact constellation schema



Star schema: The most common modeling paradigm is the star schema, in which the data warehouse contains (1) a large central table (fact table) containing the bulk of the data, with no redundancy, and (2) a set of smaller attendant tables (dimension tables), one for each dimension

Snowflake schema: The snowflake schema is a variant of the star schema model, where some dimension tables are normalized, thereby further splitting the data into additional tables. The resulting schema graph forms a shape similar to a snowflake.


Star, Snowflake and Fact constellation schema

Star, Snowflake and Fact constellation schema

